Connected Graph Searching 1 2

نویسندگان

  • Lali Barrière
  • Paola Flocchini
  • Fedor V. Fomin
  • Pierre Fraigniaud
  • Nicolas Nisse
  • Nicola Santoro
  • Dimitrios M. Thilikos
چکیده

In the graph searching game the opponents are a set of searchers and a fugitive in a graph. The searchers try to capture the fugitive by applying some sequence of moves that include placement, removal, or sliding of a searcher along an edge. The fugitive tries to avoid capture by moving along unguarded paths. The search number of a graph is the minimum number of searchers required to guarantee the capture of the fugitive. In this paper, we initiate the study of this game under the natural restriction of connectivity where we demand that in each step of the search the locations of the graph that are clean (i.e. non-accessible to the fugitive) remain connected. We give evidence that many of the standard mathematical tools used so far in classic graph searching fail under the connectivity requirement. We also settle the question on “the price of connectivity”, that is, how many searchers more are required for searching a graph when the connectivity demand is imposed. We make estimations of the price of connectivity on general graphs and we provide tight bounds for the case of trees. In particular, for an n-vertex graph the ratio between the connected Results of this paper have appeared in the proceedings of the 14th ACM Symposium on Parallel Algorithm and Architecture (SPAA 2002), the 29th Workshop on Graph Theoretic Concepts in Computer Science (WG 2003), the 13th SIAM Conference on Discrete Mathematics, (DM 2006), and the 7th Latin American Theoretical Informatics Symposium (LATIN 2006). Paola Flocchini and Nicola Santoro are supported in part by NSERC Discovery Grant; Pierre Fraigniaud is supported by the ANR projects ALADDIN and PROSE, and by the INRIA project GANG; Nicolas Nisse is supported by the ANR project AGAPE; Dimitrios M. Thilikos is supported by the project “Kapodistrias” (AΠ 02839/28.07.2008) of the National and Kapodistrian University of Athens (project code: 70/4/8757). Preprint submitted to Elsevier August 22, 2012 ha l-0 07 41 94 8, v er si on 1 15 O ct 2 01 2 Author manuscript, published in "Information and Computation 219 (2012) 1-16"

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connected and Internal Graph Searching

This paper is concerned with the graph searching game. The search number s(G) of a graph G is the smallest number of searchers required to “clear” G. A search strategy is monotone (m) if no recontamination ever occurs. It is connected (c) if the set of clear edges always forms a connected subgraph. It is internal (i) if the removal of searchers is not allowed. The difficulty of the “connected” ...

متن کامل

Monotony Properties of Connected Visible Graph Searching

Search games are attractive for their correspondence with classical width parameters. For instance, the invisible search number (a.k.a. node search number) of a graph is equal to its pathwidth plus 1, and the visible search number of a graph is equal to its treewidth plus 1. The connected variants of these games ask for search strategies that are connected, i.e., at every step of the strategy, ...

متن کامل

From Pathwidth to Connected Pathwidth

It is proven that the connected pathwidth of any graph G is at most 2 · pw(G) + 1, where pw(G) is the pathwidth of G. The method is constructive, i.e. it yields an efficient algorithm that for a given path decomposition of width k computes a connected path decomposition of width at most 2k + 1. The running time of the algorithm is O(dk2), where d is the number of ‘bags’ in the input path decomp...

متن کامل

Sufficient conditions for maximally edge-connected and super-edge-connected

Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...

متن کامل

Finite groups admitting a connected cubic integral bi-Cayley graph

A graph   is called integral if all eigenvalues of its adjacency matrix  are integers.  Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$.  In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012